3.2.62 \(\int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} (A+C \sec ^2(c+d x)) \, dx\) [162]

Optimal. Leaf size=153 \[ \frac {\sqrt {a} (5 A+8 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {a (5 A+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d} \]

[Out]

1/8*(5*A+8*C)*arctan(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))*a^(1/2)/d+1/8*a*(5*A+8*C)*sin(d*x+c)/d/(a+a*se
c(d*x+c))^(1/2)+1/12*a*A*cos(d*x+c)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(1/2)+1/3*A*cos(d*x+c)^2*sin(d*x+c)*(a+a*sec
(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.24, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 35, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {4172, 4100, 3890, 3859, 209} \begin {gather*} \frac {\sqrt {a} (5 A+8 C) \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{8 d}+\frac {a (5 A+8 C) \sin (c+d x)}{8 d \sqrt {a \sec (c+d x)+a}}+\frac {A \sin (c+d x) \cos ^2(c+d x) \sqrt {a \sec (c+d x)+a}}{3 d}+\frac {a A \sin (c+d x) \cos (c+d x)}{12 d \sqrt {a \sec (c+d x)+a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

(Sqrt[a]*(5*A + 8*C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/(8*d) + (a*(5*A + 8*C)*Sin[c + d
*x])/(8*d*Sqrt[a + a*Sec[c + d*x]]) + (a*A*Cos[c + d*x]*Sin[c + d*x])/(12*d*Sqrt[a + a*Sec[c + d*x]]) + (A*Cos
[c + d*x]^2*Sqrt[a + a*Sec[c + d*x]]*Sin[c + d*x])/(3*d)

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3859

Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(a + x^2), x], x, b*(C
ot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 3890

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
 + f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Dist[a*((2*n + 1)/(2*b*d*n)), Int[Sqrt[a + b
*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -2
^(-1)] && IntegerQ[2*n]

Rule 4100

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
 Dist[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n), Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]

Rule 4172

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dis
t[1/(b*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -2
^(-1)] || EqQ[m + n + 1, 0])

Rubi steps

\begin {align*} \int \cos ^3(c+d x) \sqrt {a+a \sec (c+d x)} \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {\int \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \left (\frac {a A}{2}+\frac {3}{2} a (A+2 C) \sec (c+d x)\right ) \, dx}{3 a}\\ &=\frac {a A \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{8} (5 A+8 C) \int \cos (c+d x) \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a (5 A+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}+\frac {1}{16} (5 A+8 C) \int \sqrt {a+a \sec (c+d x)} \, dx\\ &=\frac {a (5 A+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}-\frac {(a (5 A+8 C)) \text {Subst}\left (\int \frac {1}{a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}\\ &=\frac {\sqrt {a} (5 A+8 C) \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{8 d}+\frac {a (5 A+8 C) \sin (c+d x)}{8 d \sqrt {a+a \sec (c+d x)}}+\frac {a A \cos (c+d x) \sin (c+d x)}{12 d \sqrt {a+a \sec (c+d x)}}+\frac {A \cos ^2(c+d x) \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 0.38, size = 117, normalized size = 0.76 \begin {gather*} \frac {\left (C \left (\tanh ^{-1}\left (\sqrt {1-\sec (c+d x)}\right )+\cos (c+d x) \sqrt {1-\sec (c+d x)}\right )+2 A \, _2F_1\left (\frac {1}{2},4;\frac {3}{2};1-\sec (c+d x)\right ) \sqrt {1-\sec (c+d x)}\right ) \sqrt {a (1+\sec (c+d x))} \tan \left (\frac {1}{2} (c+d x)\right )}{d \sqrt {1-\sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^3*Sqrt[a + a*Sec[c + d*x]]*(A + C*Sec[c + d*x]^2),x]

[Out]

((C*(ArcTanh[Sqrt[1 - Sec[c + d*x]]] + Cos[c + d*x]*Sqrt[1 - Sec[c + d*x]]) + 2*A*Hypergeometric2F1[1/2, 4, 3/
2, 1 - Sec[c + d*x]]*Sqrt[1 - Sec[c + d*x]])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2])/(d*Sqrt[1 - Sec[c +
d*x]])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(568\) vs. \(2(133)=266\).
time = 20.95, size = 569, normalized size = 3.72

method result size
default \(-\frac {\left (15 A \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}+24 C \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right ) \sqrt {2}+30 A \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}+48 C \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \cos \left (d x +c \right ) \sin \left (d x +c \right ) \sqrt {2}+15 A \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )+24 C \left (-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}\right )^{\frac {5}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right ) \sqrt {2}}{2 \cos \left (d x +c \right )}\right ) \sin \left (d x +c \right )+64 A \left (\cos ^{6}\left (d x +c \right )\right )+16 A \left (\cos ^{5}\left (d x +c \right )\right )+40 A \left (\cos ^{4}\left (d x +c \right )\right )+192 C \left (\cos ^{4}\left (d x +c \right )\right )-120 A \left (\cos ^{3}\left (d x +c \right )\right )-192 C \left (\cos ^{3}\left (d x +c \right )\right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{192 d \cos \left (d x +c \right )^{2} \sin \left (d x +c \right )}\) \(569\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/192/d*(15*A*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c
)/cos(d*x+c)*2^(1/2))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+24*C*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)^2*sin(d*x+c)*2^(1/2)+30*A*(-2*cos
(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*
cos(d*x+c)*sin(d*x+c)*2^(1/2)+48*C*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+
c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*cos(d*x+c)*sin(d*x+c)*2^(1/2)+15*A*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(5
/2)*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x+c)*2^(1/2))*sin(d*x+c)+24*C*(-
2*cos(d*x+c)/(1+cos(d*x+c)))^(5/2)*2^(1/2)*arctanh(1/2*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)/cos(d*x
+c)*2^(1/2))*sin(d*x+c)+64*A*cos(d*x+c)^6+16*A*cos(d*x+c)^5+40*A*cos(d*x+c)^4+192*C*cos(d*x+c)^4-120*A*cos(d*x
+c)^3-192*C*cos(d*x+c)^3)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)/cos(d*x+c)^2/sin(d*x+c)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 2713 vs. \(2 (133) = 266\).
time = 1.26, size = 2713, normalized size = 17.73 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/96*((4*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x
 + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(3/4)*(cos(3/2*arctan2(sin(2/3*arcta
n2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(3*d*x
+ 3*c) - (cos(3*d*x + 3*c) - 1)*sin(3/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 6*(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))) + 1)^(1/4)*((sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 5*sin(1/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arct
an2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 3*cos
(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - 4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3
*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)))*sqrt(a) + 15*sqrt(a)*(arctan2(-(cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x
+ 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*arctan2(sin(3*d
*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))), (cos
(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 +
 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*
x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3
*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*arctan2(sin(2/3*a
rctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))) + 1)
- arctan2(-(cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/2*arctan2(sin(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1))*sin(1/3*
arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) - cos(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*(cos(1/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan
2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + sin(1/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))*sin(1/2*ar
ctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)
)) + 1))) - 1) - arctan2((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x +
 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan
2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) +
 1)), (cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x +
3*c)))^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) + 1) + arctan2
((cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))
)^2 + 2*cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*sin(1/2*arctan2(sin(2/3*arctan2(sin(3*
d*x + 3*c), cos(3*d*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)), (cos(2/3*arctan2(s
in(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c)))^2 + 2*cos(2/3*arc
tan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)^(1/4)*cos(1/2*arctan2(sin(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d
*x + 3*c))), cos(2/3*arctan2(sin(3*d*x + 3*c), cos(3*d*x + 3*c))) + 1)) - 1)))*A + 24*(2*(cos(2*d*x + 2*c)^2 +
 sin(2*d*x + 2*c)^2 + 2*cos(2*d*x + 2*c) + 1)^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1))*
sin(d*x + c) - (cos(d*x + c) - 1)*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c) + 1)))*sqrt(a) + sqrt(a)*
(arctan2(-(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c...

________________________________________________________________________________________

Fricas [A]
time = 2.80, size = 334, normalized size = 2.18 \begin {gather*} \left [\frac {3 \, {\left ({\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 8 \, C\right )} \sqrt {-a} \log \left (\frac {2 \, a \cos \left (d x + c\right )^{2} - 2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right ) + 1}\right ) + 2 \, {\left (8 \, A \cos \left (d x + c\right )^{3} + 10 \, A \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{48 \, {\left (d \cos \left (d x + c\right ) + d\right )}}, -\frac {3 \, {\left ({\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right ) + 5 \, A + 8 \, C\right )} \sqrt {a} \arctan \left (\frac {\sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) - {\left (8 \, A \cos \left (d x + c\right )^{3} + 10 \, A \cos \left (d x + c\right )^{2} + 3 \, {\left (5 \, A + 8 \, C\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{24 \, {\left (d \cos \left (d x + c\right ) + d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/48*(3*((5*A + 8*C)*cos(d*x + c) + 5*A + 8*C)*sqrt(-a)*log((2*a*cos(d*x + c)^2 - 2*sqrt(-a)*sqrt((a*cos(d*x
+ c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + a*cos(d*x + c) - a)/(cos(d*x + c) + 1)) + 2*(8*A*cos(d*x +
 c)^3 + 10*A*cos(d*x + c)^2 + 3*(5*A + 8*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c)
)/(d*cos(d*x + c) + d), -1/24*(3*((5*A + 8*C)*cos(d*x + c) + 5*A + 8*C)*sqrt(a)*arctan(sqrt((a*cos(d*x + c) +
a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) - (8*A*cos(d*x + c)^3 + 10*A*cos(d*x + c)^2 + 3*(5*A + 8
*C)*cos(d*x + c))*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c) + d)]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**3*(A+C*sec(d*x+c)**2)*(a+a*sec(d*x+c))**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 889 vs. \(2 (133) = 266\).
time = 1.79, size = 889, normalized size = 5.81 \begin {gather*} -\frac {3 \, {\left (5 \, A \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 8 \, C \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} - a {\left (2 \, \sqrt {2} + 3\right )} \right |}\right ) - 3 \, {\left (5 \, A \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 8 \, C \sqrt {-a} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )} \log \left ({\left | {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} + a {\left (2 \, \sqrt {2} - 3\right )} \right |}\right ) + \frac {4 \, {\left (63 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{10} A \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 72 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{10} C \sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 369 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{8} A \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 888 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{8} C \sqrt {-a} a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 1638 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} A \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 3024 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{6} C \sqrt {-a} a^{3} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 1074 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} A \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 1776 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} C \sqrt {-a} a^{4} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 171 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} A \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) + 360 \, \sqrt {2} {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} C \sqrt {-a} a^{5} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 13 \, \sqrt {2} A \sqrt {-a} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right ) - 24 \, \sqrt {2} C \sqrt {-a} a^{6} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )\right )}}{{\left ({\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{4} - 6 \, {\left (\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a}\right )}^{2} a + a^{2}\right )}^{3}}}{48 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^3*(A+C*sec(d*x+c)^2)*(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-1/48*(3*(5*A*sqrt(-a)*sgn(cos(d*x + c)) + 8*C*sqrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2
*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 - a*(2*sqrt(2) + 3))) - 3*(5*A*sqrt(-a)*sgn(cos(d*x + c)) + 8*C*s
qrt(-a)*sgn(cos(d*x + c)))*log(abs((sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2 + a
*(2*sqrt(2) - 3))) + 4*(63*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^10*A*
sqrt(-a)*a*sgn(cos(d*x + c)) + 72*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)
)^10*C*sqrt(-a)*a*sgn(cos(d*x + c)) - 369*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c
)^2 + a))^8*A*sqrt(-a)*a^2*sgn(cos(d*x + c)) - 888*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*
x + 1/2*c)^2 + a))^8*C*sqrt(-a)*a^2*sgn(cos(d*x + c)) + 1638*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*
tan(1/2*d*x + 1/2*c)^2 + a))^6*A*sqrt(-a)*a^3*sgn(cos(d*x + c)) + 3024*sqrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c)
- sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^6*C*sqrt(-a)*a^3*sgn(cos(d*x + c)) - 1074*sqrt(2)*(sqrt(-a)*tan(1/2*d*x
 + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*A*sqrt(-a)*a^4*sgn(cos(d*x + c)) - 1776*sqrt(2)*(sqrt(-a)*t
an(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4*C*sqrt(-a)*a^4*sgn(cos(d*x + c)) + 171*sqrt(2)*(s
qrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*A*sqrt(-a)*a^5*sgn(cos(d*x + c)) + 360*s
qrt(2)*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^2*C*sqrt(-a)*a^5*sgn(cos(d*x + c)
) - 13*sqrt(2)*A*sqrt(-a)*a^6*sgn(cos(d*x + c)) - 24*sqrt(2)*C*sqrt(-a)*a^6*sgn(cos(d*x + c)))/((sqrt(-a)*tan(
1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))^4 - 6*(sqrt(-a)*tan(1/2*d*x + 1/2*c) - sqrt(-a*tan(1/2
*d*x + 1/2*c)^2 + a))^2*a + a^2)^3)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int {\cos \left (c+d\,x\right )}^3\,\left (A+\frac {C}{{\cos \left (c+d\,x\right )}^2}\right )\,\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^3*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2),x)

[Out]

int(cos(c + d*x)^3*(A + C/cos(c + d*x)^2)*(a + a/cos(c + d*x))^(1/2), x)

________________________________________________________________________________________